

конкурсное задание

Региональный чемпионат Мурманской области ЮниорПрофи 2023

компетенция

Мобильная робототехника 10+

ВВЕДЕНИЕ

Основными факторами, которые влияют на широкое применение мобильной робототехники в различных отраслях промышленности, а также отраслях, связанных с сервисным обслуживанием и оказанием различных услуг населению – максимально снизить участие человека с целью получить требуемый результат с минимальным воздействием на здоровье, повышением производительности и высокой эффективностью.

Конкурсное задание «**Робот-эвакуатор**» состоит в том, что участникам соревнований следует автоматизировать процесс транспортировки неисправных автомобилей в автомастерскую, путем создания автономного робота. Нужно забрать неисправный автомобиль с точки с заданными координатами и доставить его на парковки при автомастерских.

ОПИСАНИЕ ЗАДАНИЙ

Соревновательные дни:

Первый соревновательный день (С1) отводится на повторную сборку робота и создание набора базовых программ для демонстрации базовой функциональности робота.

В течение дня, по установленному организаторами графику, участники должны представить свои презентации и инженерные книги. В конце дня, в отведенное для этого время, продемонстрировать базовую функциональность своих роботов.

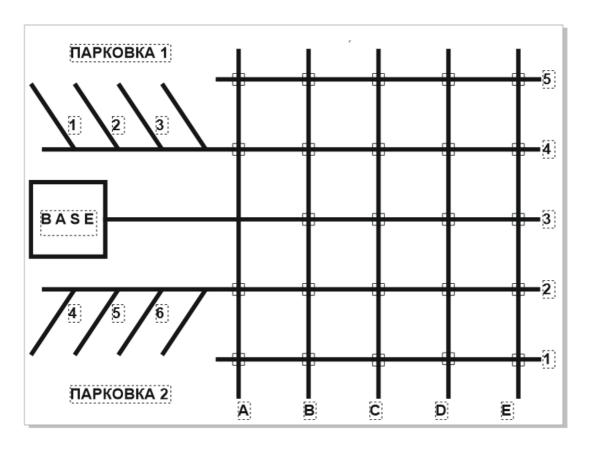
Второй соревновательный день (C2) предназначен для отладки робота и выполнения тестового задания «**Транспортировка автомобилей**».

Третий день (C3) посвящен выполнению оценочного задания «**Сортировка автомобилей**».

ОБОРУДОВАНИЕ ПЛОЩАДКИ СОРЕВНОВАНИЙ

Поле представляет собой ровную поверхность белого цвета, с бортиком по периметру, высотой от 50 мм.

В Приложении к Конкурсному заданию представлен макет поля размером 2464мм на 1829 мм (соответствует размеру поля для проведения соревнований VEX IQ Challenge сезона 2021–2022).


На поле имеются следующие зоны:

- 1. Стартовая зона «BASE», в которой робот находится в начале выполнения задания размер зоны 300х300 мм.
- 2. «Город» поле, разбитое на клетки линиями (координатная плоскость, где абсциссы обозначаются буквами А, В, С, D, Е, а ординаты цифрами 1, 2, 3, 4, 5. Размеры клетки **300х300 мм.** Ширина линий **18-20 мм**. Квадратные зоны размещения машин, размером **50х50 мм**. Метки на поле выделены линиями темного цвета (ширина линии 1-2 мм).
- 3. «Парковки» 2 шт. по обе стороны от зоны «BASE», размер зоны «Парковка» 900х300 мм. Одно парковочное место шириной 200 мм.

Зоны на поле выделены линиями темного цвета (ширина линии 18-20 мм).

Примечания: размеры и расположение зон могут быть изменены до начала соревнований.

Размеры и расположение зон, как и стартовая позиция и ориентация робота, неизменны в течение всего дня испытаний.

Автомобили представлены **пластиковым кубиком** с размером стороны **50±2 мм**.

На каждой сплошной стороне кубика размещается цветная метка (размер метки **40х40**). При использовании цветных кубиков цветная метка может не использоваться. Допускаются следующие цвета: желтый, красный, синий, зеленый.

ЗАДАНИЕ

Задание C2 - «Транспортировка автомобилей»

В начале дня определяется цвет кубика и одна парковочная зона.

Перед стартом оператор передает роботу координаты всех «автомобилей», которые подлежат эвакуации. Координаты можно передавать только с помощью оборудования, установленного на роботе. Нельзя для передачи координат использовать компьютер. Координаты должны быть выведены на экран в формате Буква Цифра (например, В5) и представлены эксперту. Далее робот должен быть установлен в зону ВАSE. Робот, согласно заданным координатам, посещает указанные точки в зоне город, забирает неисправные «автомобили», доставляет их в зону парковки и размещает на парковочные места по возрастанию номеров (сначала 1, затем 2, потом 3 и т. д). Нельзя «автомобили» перемещать по поверхности поля. По окончанию работы робот возвращается в зону ВАSE. Оператор самостоятельно определяет в какой последовательности будет эвакуировать «автомобили». Роботу нужно эвакуировать 3 «автомобиля».

Примечание: «автомобиль» считается правильно припаркованным, если кубик полностью находится в соответствующей парковочной зоне. Нельзя сдвигать «автомобили», не предназначенные для эвакуации.

Задание С3 – «Сортировка «автомобилей»»

Работают обе парковочные зоны. В начале дня определяется два цвета кубика и определяется какой цвет какой парковочной зоне соответствует.

Перед стартом оператор передает роботу координаты всех «автомобилей», которые подлежат эвакуации. Координаты можно передавать только с помощью оборудования, установленного на роботе. Нельзя для передачи координат использовать компьютер. Координаты должны быть выведены на экран в формате Буква Цифра (например, В5) и представлены эксперту. Далее робот должен быть установлен в зону ВАЅЕ. Робот, согласно заданным координатам, посещает указанные точки в зоне город и забирает неисправные «автомобили», доставляет их в зону парковки согласно цвету «автомобиля» и размещает на парковочные места по возрастанию номеров (сначала 1, затем 2, потом 3 и т. д.). Нельзя «автомобили» перемещать по поверхности поля. По окончанию работы робот возвращается в зону ВАЅЕ. Оператор самостоятельно определяет в какой последовательности будет эвакуировать «автомобили». Роботу нужно эвакуировать 6 «автомобилей».

Примечание: «автомобиль» считается правильно припаркованным, если кубик полностью находится в соответствующей парковочной зоне. Нельзя сдвигать «автомобили», не предназначенные для эвакуации.

ПОРЯДОК ВЫПОЛНЕНИЯ ЗАДАНИЙ

До начала выполнения заезда робот проходит проверку на наличие единственной программы управления.

Перед началом сдачи задания эксперты случайным образом определяют место расположения предметов в соответствии с заданием.

Перед стартом оператор передает роботу координаты всех автомобилей, подлежащих эвакуации. Координаты можно передавать только с помощью оборудования, установленного на роботе. Нельзя для передачи координат использовать компьютер. Координаты должны быть выведены на экран в формате Буква Цифра (например, В5) и представлены эксперту. Далее робот должен быть установлен в зону ВАSE

По команде эксперта участник переводит робота в автономный режим работы. В дальнейшем робот выполняет задание в полностью автономном режиме.

При нештатных ситуациях, возникающих во время заезда (замена батареек, корректировка и настройка датчиков и т. п.) остановка времени заезда не предусмотрена.

При вмешательстве участников соревнований в работу робота во время заезда, робот и все объекты возвращаются в стартовую позицию. Отсчет времени заезда не прекращается.

ДОПУСТИМОЕ ОБОРУДОВАНИЕ, МАТЕРИАЛЫ, ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ

В конструкции робота может использоваться только один программируемый блок управления, входящий в состав набора робототехнического конструктора (любого производителя), содержащего основные конструктивные элементы из пластмассы. Количество моторов не ограничено. Также можно использовать следующие датчики в указанном максимальном количестве:

НАИМЕНОВАНИЕ	КОЛИЧЕСТВО, НЕ БОЛЕЕ	ПРИМЕЧАНИЕ
Датчик света/освещенности/цвета	4	
Датчик касания	2	
Датчик расстояния	2	Допускается использование ИК и/или УЗ датчиков
Гироскопический датчик/ Компас	1	

Используемое программное обеспечение: совместимое с программируемым блоком.

КРИТЕРИИ ОЦЕНКИ

Конкурсное задание оценивается по следующим критериям:

- общая организация и управление ходом выполнения работ;
- навыки взаимодействия, коммуникации и командной работы;
- навыки документирование работ и подготовки сопроводительной документации;
- навыки создания конструкции робототехнический системы на базе типовых решений;
- навыки сборки и отладки робототехнический системы;
- навыки программирования робототехнический системы на основе типовых алгоритмов и программных решений;
- навыки отладки и настройки робототехнический системы;
- навыки пуско-наладки и сдачи в эксплуатацию робототехнический системы;
- результаты выполнения задания.

Презентация демонстрирует в полной мере деятельность членов команды по подготовке к соревнованиям. Во время устной презентации каждой команде будет предоставлено до 10 минут, чтобы поделиться своим решением с группой экспертов. Презентация может включать вспомогательные материалы (электронные слайды, например, в MS PowerPoint), робота-прототипа.

Презентация членов команды должна включать:

- изображения и минимальное количество текста, представляющие эволюцию конструкции робота;
- изображения и минимальное количество текста, представляющие стратегию выполнения задачи;
- изображения и минимальное количество текста, представляющие процесс сборки робота в целом;
- использованные решения, касающиеся конкретных систем (электрика/ механика/ программирование) в использование необходимых для понимания схем и изображений;
- информацию об образовательной организации/промышленном партнере;
- информацию о членах команды (достижения, роли в работе над заданием).

Инженерная книга должна быть создана и использована членами команды для хронологического документирования выполнения задания в рамках подготовки к соревнованиям. Инженерная книга может использоваться в качестве справочных материалов на этапе сборки.

Инженерная книга должна включать:

- развитие проекта с изменениями;
- возникающие проблемы и способы их устранения;
- принятые решения;
- результаты испытаний;
- изображения;
- печатные разделы кода;
- подробные инструкции по сборке.

Все страницы должны быть прошиты, пронумерованы и датированы.

Примечание: полный список критериев оценки презентации и задания до сведения участников не доводится.